

La Barge Creek Avalanche Fatality

Salt River Range, Wyoming; January 11, 2026

Avalanche fatalities impact many mountain communities each year, affecting recreationalists, rescuers and their families both directly and indirectly. Find support and mental health first aid [here](#) or at your local, public mental health office.

Avalanche Comments

On Sunday, January 11, 2026, at approximately 2pm, a party of two snowmobilers was involved in a fatal avalanche accident in the LaBarge Creek drainage, about one mile south of the Commissary Ridge weather station (Figs. 1, 2). A rider triggered a weak layer buried approximately two feet below the surface while crossing a convex, west-facing 39-degree slope at 8,900' (42.55660, -110.72401). The resulting avalanche slid onto flat ground in a creek drainage, burying the rider two to four feet deep. The rider deployed his airbag in the slide but the short distance that the avalanche fell (~70 feet) allowed no time for the airbag to lift him to the surface. The avalanche (SS-AMu-D2R2-O) failed on a layer of surface hoar that grew on top of a thin melt-freeze crust that developed during a dry period lasting from December 28th to the 31st.

Editor's note: This final report corrects several errors in the preliminary report. The primary change corrects the initial reports that the riders were riding separately at the time of the incident. In fact, the rider's proximity allowed the partner of the victim to begin digging within three minutes of the avalanche. The relative size and vertical fall were corrected to R2 and 70 vertical feet.

Backcountry Avalanche Forecast

The danger rating for the Salt River and Wyoming Range forecast zone for January 11th was Moderate above 7,500' and Low below that elevation. The Bottom Line section of the forecast read as follows:

Identify wind loaded slopes where riders could trigger avalanches on steep middle to upper elevation terrain. Look for signs of unstable snow including recent avalanches, shooting cracks, and large pillows/drifts. Although less likely, larger avalanches could fail on buried weak layers in steeper terrain. Tracking where these weak layers exist is critical before committing to any consequential terrain.

Persistent slabs were listed as the secondary avalanche problem, after wind slabs, and shown as located on west through north through east aspects above 7,500' and described as unlikely. The avalanche problem description read as follows:

A rain crust formed on Christmas exists on all aspects up to 10,000' and is buried by hard slabs 2-4 feet deep. Weak grains found above and below this crust have shown signs of adjusting to the overlying slab and are becoming less reactive. The slight possibility remains of triggering a large avalanche on this layer in very steep terrain over 35° on mostly shaded aspects. Rocky, unsupported slopes that contain weak trigger points are the most suspect. Large triggers, such as cornices or groups gathering in close proximity, increase the likelihood of impacting buried weak layers.

Due to the large spatial distribution across this forecast zone, assessing these weak layers before committing to very steep, consequential terrain is critical.

Weather and Snowpack Summary

The new year started off with a 10-day stormy period as a series of Pacific storms swept across the region. During this time, the Salt River Range received 29 inches of snow and 2.88 inches of SWE at BTAC's nearby Commissary Ridge weather station. Warm temperatures and rain up to 9,000' around Christmas were followed by a dry period from December 28th to the 31st.

During this dry spell, cold temperatures, clear skies and calm winds allowed a layer of 6-10mm surface hoar to form on some snow surfaces (*Figs. 3 & 4*). The extent to which this layer formed across the range is not entirely known but it appears that ideal conditions only existed in a few isolated areas, such as the La Barge Creek drainage. Only two avalanches were reported with matching depths and character in this zone around this time. One avalanche was remotely triggered about 24 miles to the north on the 9th, two days prior. Another avalanche was triggered remotely about one mile to the south on an east aspect close to the top of Commissary Ridge. The observation was submitted several hours after the fatal avalanche. That avalanche was triggered the day before in the same drainage on an east-facing slope that avalanches regularly, often due to wind loading.

Accident Summary

On January 11th, two riders - longtime riding partners - departed from the Smith Fork trailhead near Salt Pass, south of Smoot. They followed the groomed snowmobile trail before taking a shortcut east to the top of Commissary Ridge, riding south on the ridge top and then dropping into La Barge Creek (*Fig. 2*). Travelling north on a well-used but ungroomed trail on the La Barge Creek Road, they stopped to consider riding onto an untracked slope just across the creek. The surviving rider declined, concerned about getting stuck trying to cross the creek. He waited as his partner rode down into the drainage, climbed the hillside and disappeared behind trees (*Fig. 5*). Moving ahead about 60 yards for a better view, he shut off his engine when he noticed his friend's modified machine had gone silent. After unsuccessful attempts to reach him by radio and shouting, he circled back, saw the avalanche crown, and followed his friend's tracks across the creek. (*Figs. 5, 6 & 7*)

Rescue Summary

The surviving rider approached the debris and saw his friend's snowmobile partially buried on its side, still idling near the base of the slope. He immediately triggered the SOS function on his inReach as he ran 20-30 feet to the debris. As he ran, he heard a distinct "whoompf" as more weak snow collapsed beneath him. As he approached the sled, he heard the fan of his friend's airbag still running during its initial 3-minute inflation cycle as he began digging. Shortly after, the sled's engine shut off. He set his probe aside, swept snow away with his shovel and discovered the red inflated airbag. He dug hard, soon reaching the back of his friend's helmet about two feet down. Finding no pulse, he removed the helmet to improve airway access and continued digging to create a platform for CPR. He performed compressions and breaths for over 30 minutes before breaking away to send another SOS message from the west side of Commissary Ridge, about a mile away.

Dispatch received the initial SOS at 2:05pm, though the rescuer believes that he triggered the 911 button at around 1:20pm as he made his way to his buried friend. By 2:16pm, Lincoln County Dispatch had received no further details of the incident while tracking the inReach device. Deputies were dispatched at 2:22pm. At 2:31pm, a second SOS notification arrived with the message "avi send help", followed by another indicating CPR was in progress. Air medical support was requested as ground crews from Star Valley SAR made their way in from the Smith Fork Trailhead. SAR reached the scene at 3:58pm and transported the victim out by snowmobile.

Comments

Every fatal avalanche accident is a tragedy. Our goal in reporting these events is to help those involved and the broader community understand what happened and learn from it. Sharing these lessons requires courage from those directly involved and empathy from readers.

Small avalanches can still result in deep burial when debris accumulates in terrain traps. In this case, the victim deployed his airbag, but it was ineffective at "floating" him to the surface due to the short duration of the slide and the flat terrain slope's base. His prone position downslope as his sled slid downhill may have worsened the situation. While fan-based airbags can [improve the chance of survival](#) by creating an airspace, survival is not guaranteed. (The potential to step on the airspace is one reason that avalanche rescue classes teach shoveling into the slope about 1.5 times the burial depth, downhill of the probe strike. Read more about strategic shoveling techniques [here](#).) Many fatal accidents occur in small avalanches above terrain traps or near trees. Both riders were experienced, had taken avalanche classes, and noted no signs of instability during their ride.

Time is critical in avalanche burials, not because of oxygen depletion, but ice forming around the head quickly stops airflow in the debris. Rescuers have about 10-15 minutes to clear a victim's airway. In the absence of trauma, survival rates drop from 93% at 15 minutes to 10% at 35 minutes. Moving dense snow quickly is extremely difficult; in this case, the rescuer began digging within minutes and exposed the airway in about 10–12 minutes, but the victim did not survive despite these rapid efforts. Blood gas tests post-mortem showed no sign of the sled exhaust being a factor though the failure of the wrist-worn tether to shut off the machine is a cautionary note. Traumatic injury does not seem to be a factor either. One conclusion from a formal study on air pockets made by airbags and the potential to increase survival rates concludes, “the degree of hypoxia following avalanche burial is dependent on air pocket volume, snow density and **unknown individual personal characteristics...**” Sometimes airbags work as advertised but the victim still doesn't survive.

Airbags improve survival odds but have limitations. [Analyses of Canadian and American accident data](#) show that airbags improve the odds of survival by about 11 percent. If that number seems low, it is because it only includes situations where an airbag is successfully deployed but trees, rocks, cliffs and terrain traps cause critical trauma or deep burial. The study looked only at avalanches with “serious involvement” that excludes situations like small avalanches where the airbag wouldn't make a difference in outcome. Put another way, airbags help but not in highly consequential terrain. As Bruce Tremper notes [in a blog](#); “*unless I'm 99.9 percent certain that the slope won't slide, then I don't go to un-survivable terrain....I want to ride in terrain where it has a chance to make a difference. In other words, choose terrain with no obstacles, no terrain traps or sharp transitions and avoid large avalanche paths.*”

You can find more information about this avalanche [here](#) and a video [here](#).

BTAC forecasters extend their deepest condolences to family, friends and others affected by this tragedy. Forecast staff will produce a more detailed report as more information becomes available. Thanks to Lincoln County Sheriff's office, Star Valley SAR and the deceased's partner for providing details about the accident.

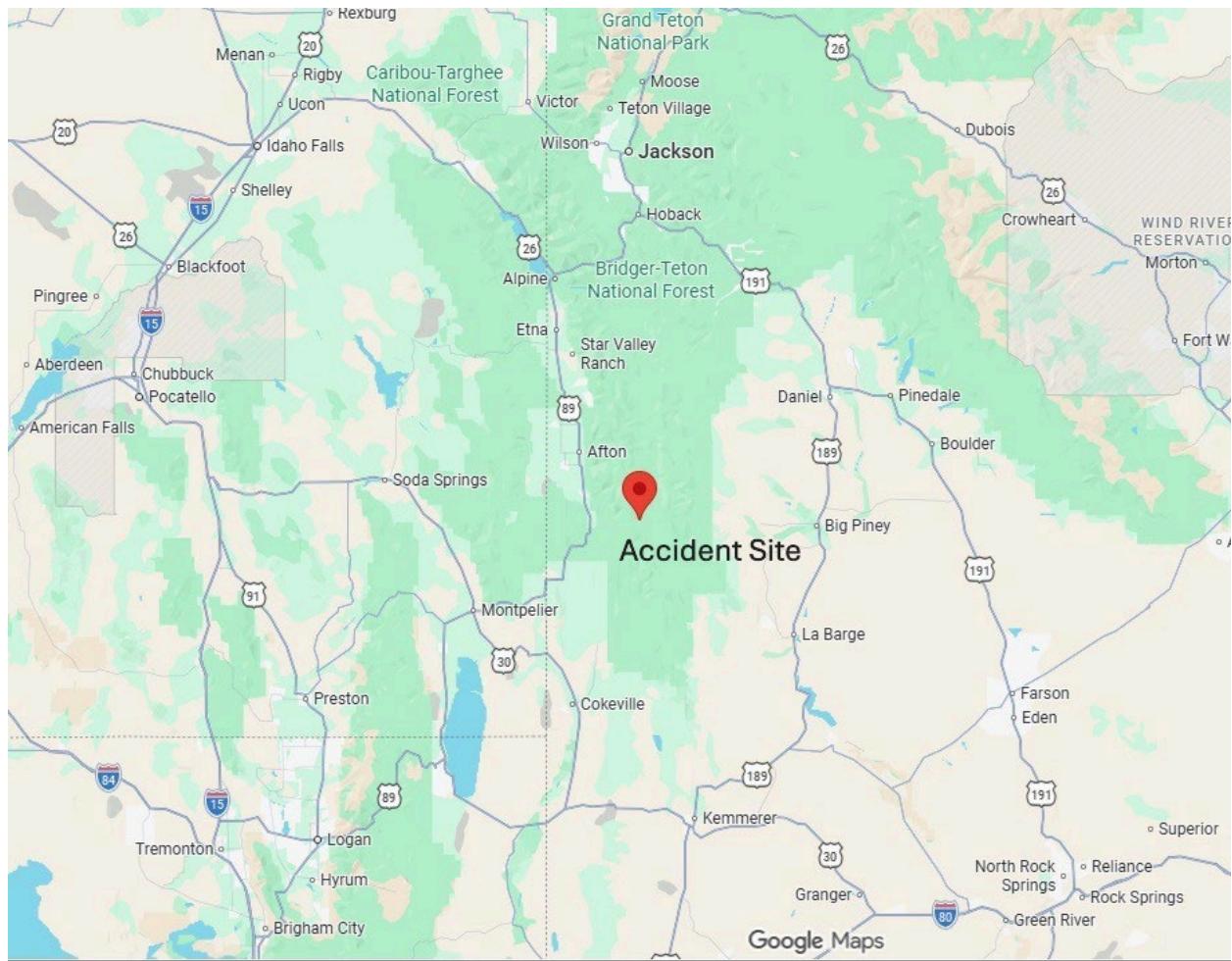


Figure 1

Figure 2 Looking north at Smiths Fork Road and the Commissary Ridge area.

LaBarge Creek 8900 W

Salt River Range

WY

Elevation: 8930 ft

Aspect: W

Travis Baldwin

01/12/2026 - 11:50am

Co-ord: 42.56050N, -110.72403W

Slope Angle: 38°

Wind Loading: no

Specifics: Pit is adjacent to avalanche: crown; Recent avalanche activity on similar slopes

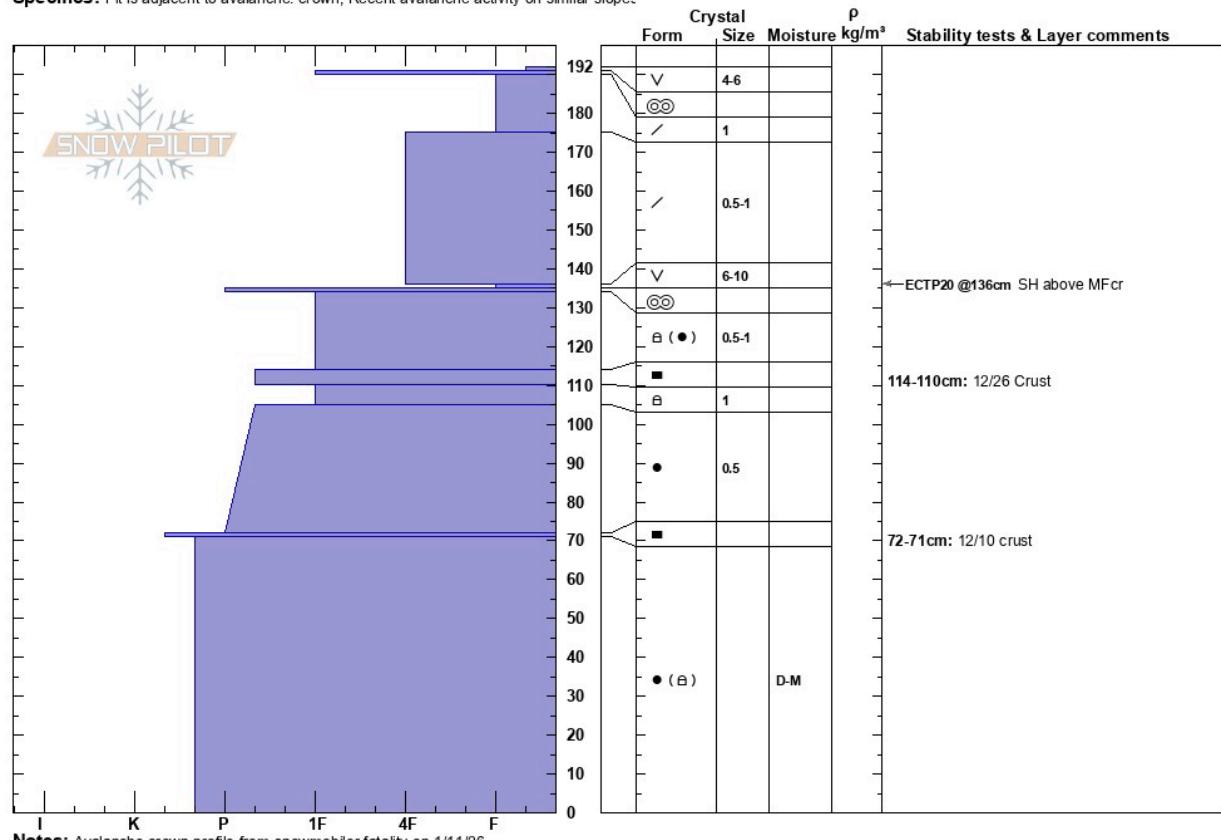
Stability:

Air Temperature:

Sky Cover: FEW

Precipitation: NO

Wind: Calm


HS:192

Layer Notes:

136-135cm: Problematic layer

114-110cm: 12/26 Crust

72-71cm: 12/10 crust

Notes: Avalanche crown profile from snowmobiler fatality on 1/11/26

Figure 3 Crown profile of the avalanche made by BTAC forecasters the day following the accident. The shorter the blue bars the softer and weaker the snow.

Figure 4 BTAC forecaster examining the crown of the avalanche.

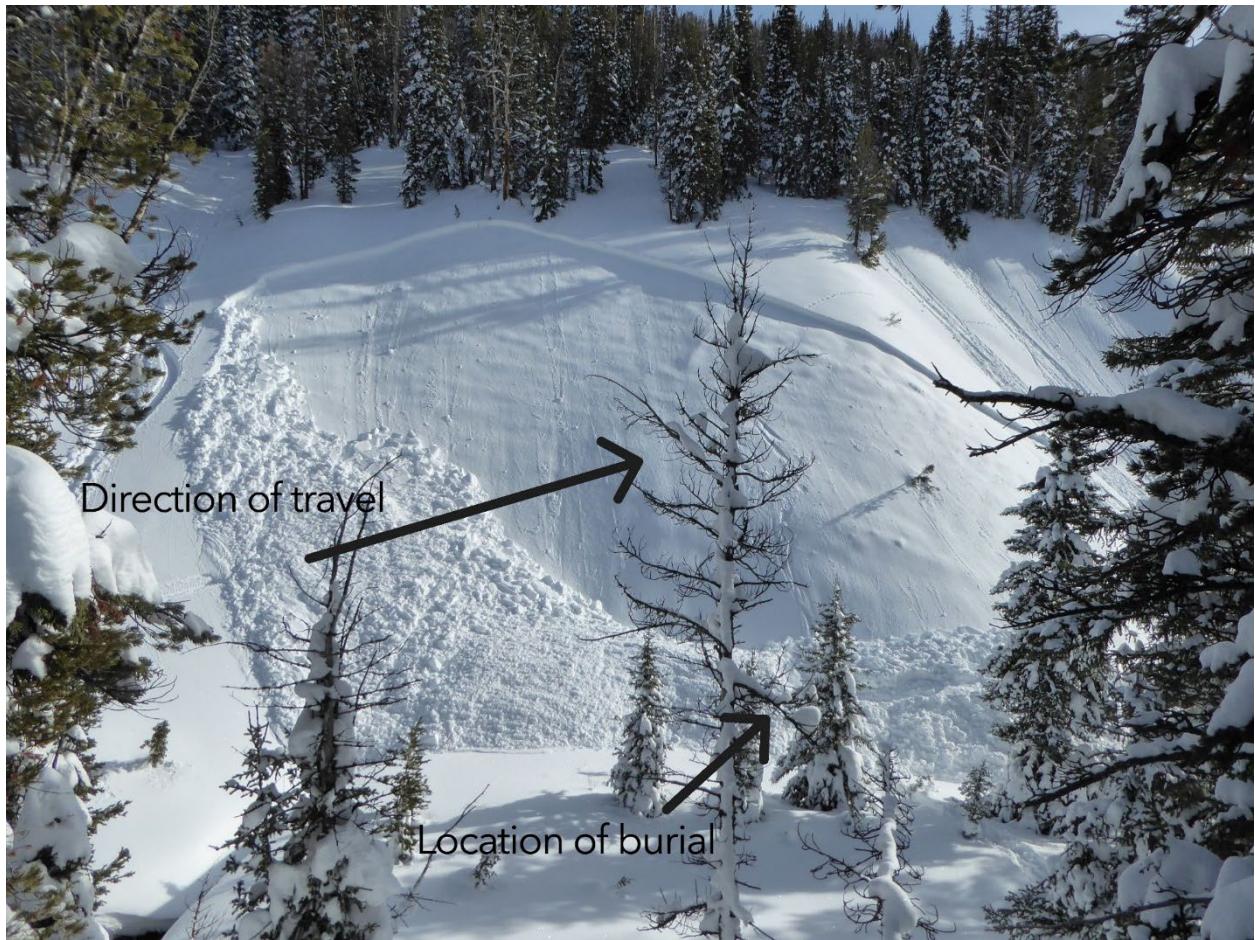


Figure 5 Tracks are visible on the left entering the convex slope.

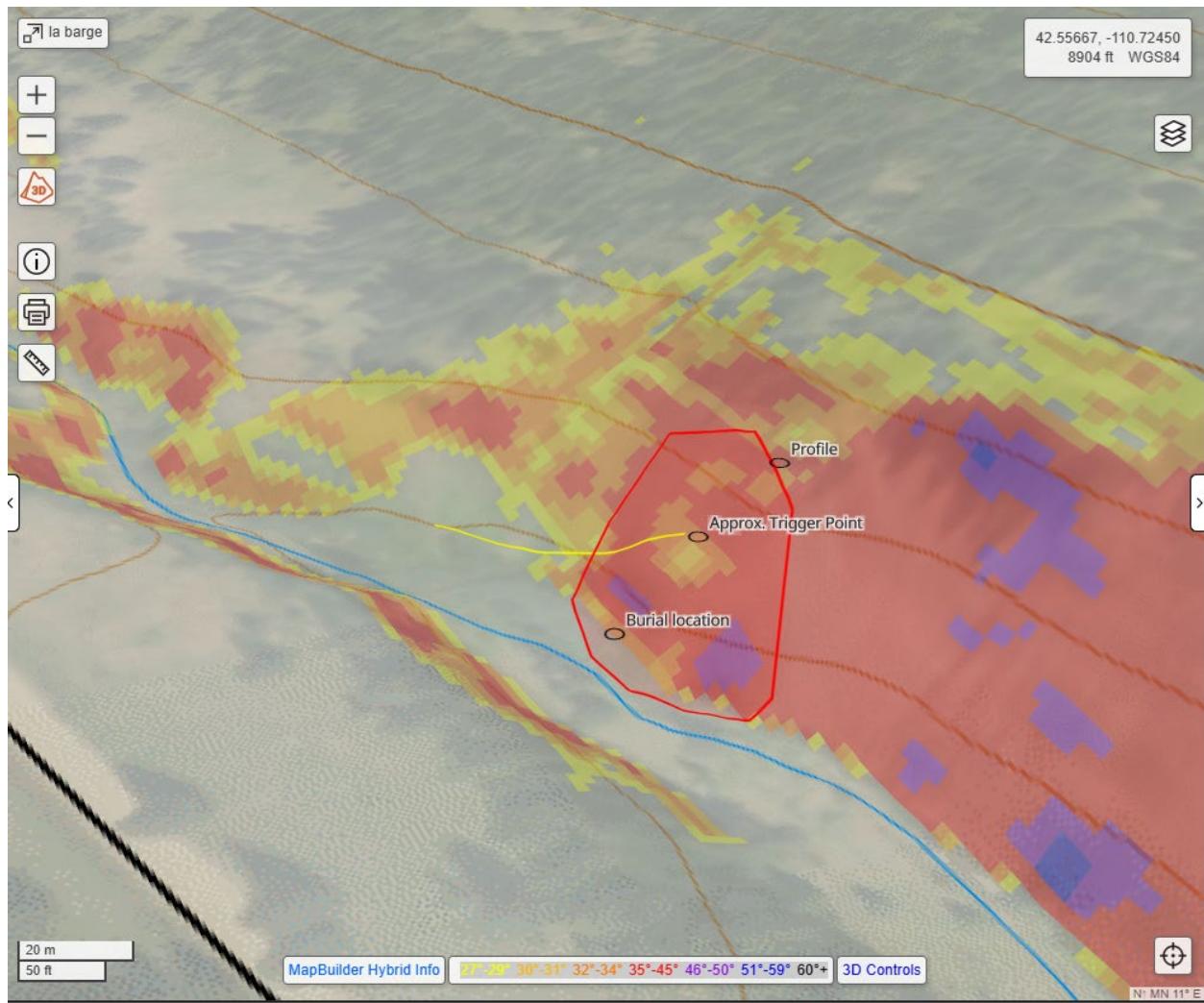


Figure 6 Slope angle shading on a topographic map showing the small size of the avalanche relative to the surrounding terrain with the flat stream valley below the slope.

Figure 7 Tracks from the snowmobile are visible on the bed surface. The sled came to rest on its side, mostly buried on its side with the victim just downslope and to the left.